Hydraulic shock absorber selection

Five basic criteria are required for sizing the shock absorbers: a) impacting mass m (kg)

- b) impact speed v (m/s)
- c) additional external forces acting on the mass e.g. propelling force F (N) d) number of strokes of the shock absorber per hour X (1/h)
- e) number of parallel shock absorbers

Free falling mass

1.
$$W_{k} = m \cdot g \cdot H$$

2. $W_{A} = m \cdot g \cdot S$
3. $W_{kg} = W_{k} + W_{A}$
4. $W_{kg/h} = W_{kg} \cdot X$
5. $m_{e} = \frac{2 \cdot W_{kg}}{v_{e}^{2}}$
6. $v = v_{e} = \sqrt{2 \cdot g \cdot H}$

Mass without propelling force

Mass with propelling force, horizontal

Movement downward: $W_A = (F + m \cdot g) \cdot S$ Movement upward: $W_A = (F - m \cdot g) \cdot S$ 1. $v_e = \frac{V}{K1}$ 2. $W_k = \frac{M \cdot v_e^2}{2}$ 3. $W_A = F \cdot S$ 4. $W_{kg} = W_k + W_A$ 5. $W_{kg/h} = W_{kg} \cdot X$ 6. $m_e = \frac{2 \cdot W_{kg}}{v_e^2}$

Swinging mass without propelling force

0
1. $W_k = \frac{m \cdot v^2}{2} = J \frac{\omega^2}{2}$
2. $W_A = \frac{M \cdot S}{r}$
3. $W_{kg} = W_k^+ W_A$
4. $W_{kg/h} = W_{kg} \cdot X$ 5. $v_e = r \cdot \omega = \frac{v \cdot r}{p}$
$6. m_e = \frac{2 \cdot W_{kg}}{W^2}$
V_e^2

Mass on driven rollers

Mass on incline

Rotary table with propelling force

1.
$$W_k = \frac{m \cdot v^2}{2} = J \frac{\cdot \omega^2}{2}$$

2. $W_A = \frac{M \cdot S}{r}$
3. $W_{kg} = W_k + W_A$
4. $W_{kg/h} = W_{kg} \cdot X$
5. $v_e = r \cdot \omega = \frac{v \cdot r}{R}$
6. $m_e = \frac{2 \cdot W_{kg}}{v_e^2}$

Swinging mass with propelling force

Formulae

Effective mass	Counter force	Deceleration time			
$m_{e} = \frac{2 \cdot W_{kg}}{1 - 1}$	$F_{g} = \frac{W_{kg} \cdot 1.2^{*}}{$	$t = \frac{2 \cdot S}{1.2^*}$			
V _e ²	S	V _e			
Deceleration time		Stroke			
$a = \frac{V^2}{1.2^*}$		$S = \frac{V^2}{1.2^*}$			
2 ·	S	2 · a			
*) Calculation for optimum setting. Allow a safety margin!					

Used values and variables

W _k W _A	[Nm] [Nm]	kinetic energy propelling force energy	K_1	[1]	correction factor for pneu- matic drive force (K,=0.65)
W	[Nm]	total energy	М	[Nm]	torque
W kg W kg/h	$[Nm \cdot h^{-1}]$	total energy per hour	R, r	[m]	radius
m	[kg]	mass	Н	[m]	height
m _e	[kg]	effective mass	g	$[m \cdot s^{-2}]$	acceleration due to gravity
v	$[m \cdot s^{-1}]$	impact speed	J	[kg·m ²]	moment of inertia
v _e	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$	effective speed	ω	[s ⁻¹]	angular velocity
X	$[h^{-1}]$	number of strokes per hour	μ	[1]	coefficient of friction
S	[m]	stroke			(steel=0.2)
F	[N]	propelling force	a	[°]	angle
Fp	[N]	pneumatic drive force	a	$[m \cdot s^{-2}]$	acceleration / deceleration
P		-	t	[s]	deceleration time
			F _G	[N]	counter force